ifcopenshell.util.shape_builder

Module Contents

class ifcopenshell.util.shape_builder.ShapeBuilder(ifc_file: ifcopenshell.file)
block(position: VectorType = (0.0, 0.0, 0.0), x_length: float = 1.0, y_length: float = 1.0, z_length: float = 1.0) ifcopenshell.entity_instance
Parameters:
  • position – the bottom left (min X/Y of the cube).

  • x_length – the X length, in the +X direction

  • y_length – the Y length, in the +Y direction

  • z_length – the Z length, in the +Z direction

Returns:

IfcBlock

circle(center: VectorType = (0.0, 0.0), radius: float = 1.0) ifcopenshell.entity_instance
Parameters:
  • center – circle 2D position

  • radius – radius of the circle

Returns:

IfcCircle

create_axis2_placement_2d(position: VectorType = (0.0, 0.0), x_direction: VectorType | None = None) ifcopenshell.entity_instance

Create IfcAxis2Placement2D.

create_axis2_placement_3d(position: VectorType = (0.0, 0.0, 0.0), z_axis: VectorType = (0.0, 0.0, 1.0), x_axis: VectorType = (1.0, 0.0, 0.0)) ifcopenshell.entity_instance

Create IfcAxis2Placement3D.

Parameters:
  • position – placement position (Axis).

  • z_axis – local Z axis direction.

  • x_axis – local X axis direction (RefDirection).

Returns:

IfcAxis2Placement3D

create_axis2_placement_3d_from_matrix(matrix: numpy.typing.NDArray[numpy.float64] | None = None) ifcopenshell.entity_instance

Create IfcAxis2Placement3D from numpy matrix.

Parameters:

matrix – 4x4 transformation matrix, defaults to np.eye(4)

Returns:

IfcAxis2Placement3D

create_ellipse_curve(x_axis_radius: float, y_axis_radius: float, position: VectorType = (0.0, 0.0), trim_points: SequenceOfVectors = (), ref_x_direction: VectorType = (1.0, 0.0), trim_points_mask: Sequence[int] = ()) ifcopenshell.entity_instance

Ellipse trimming points should be specified in counter clockwise order.

For example, if you need to get the part of the ellipse ABOVE y-axis, you need to use mask (0,2). Below y-axis - (2,0)

For more information about trim_points_mask check builder.get_trim_points_from_mask

Notion: trimmed ellipse also contains polyline between trim points, meaning IfcTrimmedCurve could be used for further extrusion.

create_swept_disk_solid(path_curve: ifcopenshell.entity_instance, radius: float) ifcopenshell.entity_instance

Create IfcSweptDiskSolid from path_curve (must be 3D) and radius

create_transition_arc_ifc(width: float, height: float, create_ifc_curve: bool = False) tuple[SequenceOfVectors, list[list[int]], ifcopenshell.entity_instance | None]

Create an arc in the rectangle with specified width and height.

If it’s not possible to make a complete arc, create an arc with longest radius possible and straight segment in the middle.

create_z_profile_lips_curve(FirstFlangeWidth: float, SecondFlangeWidth: float, Depth: float, Girth: float, WallThickness: float, FilletRadius: float) ifcopenshell.entity_instance
curve_between_two_points(points: tuple[VectorType, VectorType]) ifcopenshell.entity_instance

Simple circle based curve between two points Good for creating curves and fillets, won’t work for continuous ellipse shapes.

Parameters:

points – tuple of 2 points.

Returns:

IfcIndexePolyCurve

deep_copy(element: ifcopenshell.entity_instance) ifcopenshell.entity_instance
extrude(profile_or_curve: ifcopenshell.entity_instance, magnitude: float = 1.0, position: VectorType = (0.0, 0.0, 0.0), extrusion_vector: VectorType = (0.0, 0.0, 1.0), position_z_axis: VectorType = (0.0, 0.0, 1.0), position_x_axis: VectorType = (1.0, 0.0, 0.0), position_y_axis: VectorType | None = None) ifcopenshell.entity_instance

Extrude profile or curve to get IfcExtrudedAreaSolid.

REMEMBER when handling custom axes - IFC is using RIGHT handed coordinate system.

Position and position axes are in world space, extrusion vector in placement space defined by position_x_axis/position_y_axis/position_z_axis

NOTE: changing position also changes the resulting geometry origin.

Parameters:
  • profile_or_curve – Profile or a curve to extrude (curve will automatically converted to a profile).

  • extrusion_vector – as defined in coordinate system position_x_axis+position_z_axis

  • position – as defined in default IFC coordinate system, not in position_x_axis+position_z_axis

  • position_y_axis – optional, could be used to calculate Z-axis based on Y-axis

Returns:

IfcExtrudedAreaSolid

extrude_face_set(points: SequenceOfVectors, magnitude: float, extrusion_vector: VectorType = (0, 0, 1), offset: VectorType | None = None, start_cap: bool = True, end_cap: bool = True) ifcopenshell.entity_instance

Method to extrude by creating face sets rather than creating IfcExtrudedAreaSolid.

Useful if your representation is already using face sets and you need to avoid using SweptSolid to assure CorrectItemsForType.

Parameters:
  • points – list of points, assuming they form consecutive closed polyline.

  • magnitude – extrusion magnitude

  • extrusion_vector – extrusion direction, by default it’s extruding by Z+ axis

  • offset – offset from the points

  • start_cap – if True, create start cap, by default it’s True

  • end_cap – if True, create end cap, by default it’s True

Returns:

IfcPolygonalFaceSet

extrude_kwargs(axis: Literal['Y', 'X', 'Z']) dict[str, tuple[float, float, float]]

Shortcut to get kwargs for ShapeBuilder.extrude to extrude by some axis.

It assumes you have 2D profile in:

XZ plane for Y axis extrusion,

YZ plane for X axis extrusion,

XY plane for Z axis extrusion,

Extruding by X/Y using other kwargs might break ValidExtrusionDirection.

faceted_brep(points: SequenceOfVectors, faces: Sequence[Sequence[int]]) ifcopenshell.entity_instance

Generate an IfcFacetedBrep with a closed shell

Note that polygonal_face_set() is recommended in IFC4.

Parameters:
  • points – list of 3d coordinates

  • faces – list of faces consisted of point indices (points indices starting from 0)

Returns:

IfcFacetedBrep

get_polyline_coords(polyline: ifcopenshell.entity_instance) numpy.ndarray

polyline should be either IfcIndexedPolyCurve or IfcPolyline

get_rectangle_coords(size: VectorType = (1.0, 1.0), position: VectorType | None = None) numpy.ndarray

Get rectangle coords arranged as below:

3 2
0 1
Parameters:
  • size – rectangle size, could be either 2d or 3d, defaults to (1,1)

  • position – rectangle position, default to None. if position not specified zero-vector will be used

Returns:

list of rectangle coords

get_representation(context: ifcopenshell.entity_instance, items: ifcopenshell.entity_instance | Sequence[ifcopenshell.entity_instance], representation_type: str | None = None) ifcopenshell.entity_instance

Create IFC representation for the specified context and items.

Parameters:
  • context – IfcGeometricRepresentationSubContext

  • items – could be a list or single curve/IfcExtrudedAreaSolid

  • representation_type – Explicitly specified RepresentationType, defaults to None. If not provided it will be guessed from the items types

Returns:

IfcShapeRepresentation

get_simple_2dcurve_data(coords: SequenceOfVectors, fillets: Sequence[int] = (), fillet_radius: float | Sequence[float] = (), closed: bool = True, create_ifc_curve: bool = False) tuple[list[VectorType], list[list[int]], ifcopenshell.entity_instance | None]

Creates simple 2D curve from set of 2d coords and list of points with fillets. Simple curve means that all fillets are based on 90 degree angle.

Parameters:
  • coords – list of 2d coords. Example: ((x0,y0), (x1,y1), (x2, y2))

  • fillets – list of points from coords to base fillet on. Example: (1,)

  • fillet_radius – list of fillet radius for each of corresponding point form fillets. Example: (5.,) Note: fillet_radius could be just 1 float value if it’s the same for all fillets.

  • closed – boolean whether curve should be closed (whether last point connected to first one). Default: True

  • create_ifc_curve – create IfcIndexedPolyCurve or just return the data. Default: False

Returns:

(points, segments, ifc_curve) for the created simple curve if both points in e are equally far from pt, then v1 is returned.

get_trim_points_from_mask(x_axis_radius: float, y_axis_radius: float, trim_points_mask: Sequence[int], position_offset: VectorType | None = None) numpy.ndarray

Handy way to get edge points of the ellipse like shape of a given radiuses.

Mask points are numerated from 0 to 3 ccw starting from (x_axis_radius/2; 0).

Example: mask (0, 1, 2, 3) will return points (x, 0), (0, y), (-x, 0), (0, -y)

half_space_solid(plane: ifcopenshell.entity_instance, agreement_flag: bool = False) ifcopenshell.entity_instance
Parameters:
  • plane – The IfcPlane representing the half space.

  • agreement_flag – False if +Z represents the void

Returns:

IfcHalfSpaceSolid

mep_bend_shape(segment: ifcopenshell.entity_instance, start_length: float, end_length: float, angle: float, radius: float, bend_vector: VectorType, flip_z_axis: bool) tuple[ifcopenshell.entity_instance, dict[str, Any]]

Generate a MEP bend shape for the provided segments.

Parameters:
  • segment – IfcFlowSegment for a bend. Note that for a bend start and end segments types should match.

  • angle – bend angle, in radians

  • radius – bend radius

  • bend_vector – offset between start and end segments in local space of start segment used mainly to determine the second bend axis and it’s direction (positive or negative), the actual magnitude of the vector is not important (though near zero values will be ignored).

  • flip_z_axis – since we cannot determine z axis direction from the profile offset, there is an option to flip it if bend is going by start segment Z- axis.

Returns:

tuple of Model/Body/MODEL_VIEW IfcRepresentation and dictionary of transition shape data

mep_transition_calculate(start_half_dim: numpy.ndarray, end_half_dim: numpy.ndarray, offset: numpy.ndarray, diff: numpy.ndarray | None = None, end_profile: bool = False, length: float | None = None, angle: float | None = None, verbose: bool = True) float | None

will return transition length based on the profile dimension differences and offset.

If length is provided will return transition angle

mep_transition_length(start_half_dim: numpy.ndarray, end_half_dim: numpy.ndarray, angle: float, profile_offset: VectorType = (0.0, 0.0), verbose: bool = True)

get the final transition length for two profiles dimensions, angle and XY offset between them,

the difference from calculate_transition - get_transition_length is making sure that length will fit both sides of the transition

mep_transition_shape(start_segment: ifcopenshell.entity_instance, end_segment: ifcopenshell.entity_instance, start_length: float, end_length: float, angle: float = 30.0, profile_offset: VectorType = (0.0, 0.0)) tuple[ifcopenshell.entity_instance, dict[str, Any]] | tuple[None, None]

Generate a MEP transition shape for the provided segments.

Parameters:
  • start_segment – Starting segment.

  • end_segment – Ending segment.

  • start_length – Start transition length.

  • end_length – End transition length.

  • angle – Transition angle, in degrees. Good default values from angle = 30/60 deg 30 degree angle will result in 75 degrees on the transition (= 90 - α/2) - https://i.imgur.com/tcoYDWu.png

  • profile_offset – 2D vector for profile offset.

Returns:

A tuple of Model/Body/MODEL_VIEW IfcRepresentation and dictionary of transition shape data. Or (None, None) if there was an error in the process.

mesh(points: list[list[float]], faces: list[list[int]]) ifcopenshell.entity_instance
mirror(curve_or_item: ifcopenshell.entity_instance | list[ifcopenshell.entity_instance], mirror_axes: VectorType | SequenceOfVectors = (1.0, 1.0), mirror_point: VectorType = (0.0, 0.0), create_copy: bool = False, placement_matrix: numpy.ndarray | None = None) ifcopenshell.entity_instance | list[ifcopenshell.entity_instance]

Mirror curve/representaiton item/representation.

Parameters:
  • curve_or_item – A single item to mirror or a sequence of them.

  • mirror_axes

    A vector of values, should have value > 0 for axes where mirror should be applied. Example: mirroring A(1,0) by axis (1,0) will result in A’(-1,0)

    Also could be a list of mirrors to apply to curve_or_item multiple mirror_axes will result in multiple resulting curves Example: curve_or_item = [a, b], mirror_axes=[v1, v2], result = [av1, av2, bv1, bv2]

  • mirror_point – Point relative to which mirror should be applied.

  • create_copy – Whether to mirror the provided item or it’s copy.

  • placement_matrix – Optional placement matrix to use for polylines.

Returns:

Mirrored curve/item/representation or a sequence of them.

mirror_2d_point(point_2d: VectorType, mirror_axes: VectorType = (1.0, 1.0), mirror_point: VectorType = (0.0, 0.0)) numpy.ndarray

mirror_axes - along which axes mirror will be applied

plane(location: VectorType = (0.0, 0.0, 0.0), normal: VectorType = (0.0, 0.0, 1.0)) ifcopenshell.entity_instance

Create IfcPlane.

Parameters:
  • location – plane position.

  • normal – plane normal direction.

Returns:

IfcPlane

polygonal_face_set(points: SequenceOfVectors, faces: Sequence[Sequence[int]]) ifcopenshell.entity_instance

Generate an IfcPolygonalFaceSet

Note that this is not available in IFC2X3.

Parameters:
  • points – list of 3d coordinates

  • faces – list of faces consisted of point indices (points indices starting from 0)

Returns:

IfcPolygonalFaceSet

polyline(points: SequenceOfVectors, closed: bool = False, position_offset: VectorType | None = None, arc_points: Sequence[int] = ()) ifcopenshell.entity_instance

Generate an IfcIndexedPolyCurve based on the provided points.

Parameters:
  • points – List of 2d or 3d points

  • closed – Whether polyline should be closed. Default is False

  • position_offset – offset to be applied to all points

  • arc_points – Indices of the middle points for arcs. For creating an arc segment, provide 3 points: arc_start, arc_middle and arc_end to points and add the arc_middle point’s index to arc_points

Returns:

IfcIndexedPolyCurve

Example:

# rectangle
points = Vector((0, 0)), Vector((1, 0)), Vector((1, 1)), Vector((0, 1))
position = Vector((2, 0))
# #2=IfcIndexedPolyCurve(#1,(IfcLineIndex((1,2,3,4,1))),$)
polyline = builder.polyline(points, closed=True, position_offset=position)

# arc between points (1,0) and (0,1). Second point in the arc should be it's middle
points = Vector((1, 0)), Vector((0.707, 0.707)), Vector((0, 1)), Vector((0,2))
arc_points = (1,) # point with index 1 is a middle of the arc
# 4=IfcIndexedPolyCurve(#3,(IfcArcIndex((1,2,3)),IfcLineIndex((3,4,1))),$)
curved_polyline = builder.polyline(points, closed=False, position_offset=position, arc_points=arc_points)
profile(outer_curve: ifcopenshell.entity_instance, name: str | None = None, inner_curves: Sequence[ifcopenshell.entity_instance] = (), profile_type: str = 'AREA') ifcopenshell.entity_instance

Create a profile.

Parameters:
  • outer_curve – Profile IfcCurve.

  • inner_curves – a sequence of IfcCurves.

Returns:

IfcArbitraryClosedProfileDef or IfcArbitraryProfileDefWithVoids.

rectangle(size: VectorType = (1.0, 1.0), position: VectorType | None = None) ifcopenshell.entity_instance

Generate a rectangle polyline.

Parameters:
  • size – rectangle size, could be either 2d or 3d, defaults to (1,1)

  • position – rectangle position, default to None. if position not specified zero-vector will be used

Returns:

IfcIndexedPolyCurve

rotate(curve_or_item: ifcopenshell.entity_instance | Sequence[ifcopenshell.entity_instance], angle: float = 90.0, pivot_point: VectorType = (0.0, 0.0), counter_clockwise: bool = False, create_copy: bool = False) ifcopenshell.entity_instance | list[ifcopenshell.entity_instance]

Rotate curve/representaiton item/representation.

Parameters:
  • curve_or_item – A single item to rotate or a sequence of them.

  • angle – Rotation angle, in degrees.

  • pivot_point – Rotation pivot point.

  • counter_clockwise – Whether rotation is counter-clockwise.

  • create_copy – Whether to rotate the provided item or it’s copy.

Returns:

Rotated curve/representaiton item/representation or a sequence of them.

rotate_2d_point(point_2d: VectorType, angle: float = 90.0, pivot_point: VectorType = (0.0, 0.0), counter_clockwise: bool = False) numpy.ndarray
rotate_extrusion_kwargs_by_z(kwargs: dict[str, Any], angle: float, counter_clockwise: bool = False) dict[str, VectorType]

shortcut to rotate extrusion kwargs by z axis

kwargs expected to have position_x_axis and position_z_axis keys

angle is a rotation value in radians

by default rotation is clockwise, to make it counter clockwise use counter_clockwise flag

set_polyline_coords(polyline: ifcopenshell.entity_instance, coords: SequenceOfVectors) None

polyline should be either IfcIndexedPolyCurve or IfcPolyline

sphere(radius: float = 1.0, center: VectorType = (0.0, 0.0, 0.0)) ifcopenshell.entity_instance
Parameters:
  • radius – radius of the sphere, defaults to 1.0

  • center – sphere position, defaults to (0.0, 0.0, 0.0)

Returns:

IfcSphere

translate(curve_or_item: ifcopenshell.entity_instance | Sequence[ifcopenshell.entity_instance], translation: VectorType, create_copy: bool = False) ifcopenshell.entity_instance | list[ifcopenshell.entity_instance]

Translate curve/representaiton item/representation.

Parameters:
  • curve_or_item – A single item to translate or a sequence of them.

  • translation – Translation vector.

  • create_copy – Whether to translate the provided item or it’s copy.

Returns:

Translated curve/item/representation or a sequence of them.

file
ifcopenshell.util.shape_builder.V(*args: float | int | VectorType | SequenceOfVectors) numpy.typing.NDArray[numpy.float64]

Convert floats / vector / sequence of vectors to numpy array.

Note that float argument type also allows passing ints, which will be converted to floats (a double type) as IfcOpenShell is strict about setting int/float attributes.

ifcopenshell.util.shape_builder.ifc_safe_vector_type(v: VectorType | SequenceOfVectors) Any

Convert vector / sequence of vectors to a list of floats that’s safe to save IFC attribute.

Basically converting all numbers in sequences to Python floats.

ifcopenshell.util.shape_builder.is_x(value: float, x: float, si_conversion: float | None = None) bool
ifcopenshell.util.shape_builder.np_angle(a: VectorType, b: VectorType) float

Get angle between vectors in radians. Designed to work similar to Vector.angle.

ifcopenshell.util.shape_builder.np_angle_signed(a: VectorType, b: VectorType) float

Get signed angle between 2D vectors in radians (clockwise is positive). Designed to work similar to Vector.angle_signed.

ifcopenshell.util.shape_builder.np_intersect_line_line(v1: VectorType, v2: VectorType, v3: VectorType, v4: VectorType) tuple[numpy.ndarray, numpy.ndarray]

Get 2 closest points on each line. First line - (v1, v2). Second line - (v3, v4).

Designed to work similar to mathutils.geometry.intersect_line_line.

ifcopenshell.util.shape_builder.np_lerp(a: VectorType, b: VectorType, t: float) numpy.ndarray
ifcopenshell.util.shape_builder.np_matrix_normalized(matrix: numpy.ndarray) numpy.ndarray
ifcopenshell.util.shape_builder.np_matrix_to_euler(matrix: numpy.ndarray) tuple[float, float, float]

Convert a rotation matrix to Euler angles.

Designed to work similar to mathutils.Matrix.to_euler. Currently only XYZ rotation is supported.

ifcopenshell.util.shape_builder.np_normal(vectors: SequenceOfVectors) numpy.ndarray

Normal of 3D Polygon.

Designed to work similar to mathutils.geometry.normal.

ifcopenshell.util.shape_builder.np_normalized(v: VectorType) numpy.ndarray
ifcopenshell.util.shape_builder.np_rotation_matrix(angle: float, size: int, axis: Literal['X', 'Y', 'Z'] | VectorType | None = None) numpy.ndarray

Get rotation matrix. Designed to be similar to mathutils Matrix.Rotation but to use numpy.

Parameters:
  • float – Rotation angle, in radians.

  • size – Matrix size ([2;4]).

  • axis – Rotation axis. For 2x2 matrices Z assumed by default and argument can be omitted, for 3x3/4x4 matrices could be either axis literal or a rotation axis presented as a vector.

Returns:

Rotation matrix.

ifcopenshell.util.shape_builder.np_round_to_precision(v: numpy.ndarray, si_conversion: float) numpy.ndarray
ifcopenshell.util.shape_builder.np_to_3d(v: VectorType, z: float = 0.0) numpy.ndarray

Convert 2D/4D vector to 3D.

ifcopenshell.util.shape_builder.np_to_4d(v: VectorType, z: float = 0.0, w: float = 1.0) numpy.ndarray

Convert 2D/3D vector to 4D (e.g. for multiplying with 4x4 matrix).

ifcopenshell.util.shape_builder.np_to_4x4(matrix_3x3: numpy.ndarray) numpy.ndarray

Convert 3x3 matrix to 4x4.

ifcopenshell.util.shape_builder.round_to_precision(x: float, si_conversion: float) float
ifcopenshell.util.shape_builder.PRECISION = 1e-05
ifcopenshell.util.shape_builder.SequenceOfVectors
ifcopenshell.util.shape_builder.VectorType