ifcopenshell.util.shape_builder
¶
Module Contents¶
- class ifcopenshell.util.shape_builder.ShapeBuilder(ifc_file: ifcopenshell.file)¶
- circle(center: mathutils.Vector = Vector((0.0, 0.0)).freeze(), radius: float = 1.0) ifcopenshell.entity_instance ¶
- Parameters:
center (Vector, optional) – circle 2D position, defaults to zero-vector
radius (float, optional) – radius of the circle, defaults to 1.0
- Returns:
IfcCircle
- Return type:
ifcopenshell.entity_instance
- create_axis2_placement_3d(position: VectorTuple = (0.0, 0.0, 0.0), z_axis: VectorTuple = (0.0, 0.0, 1.0), x_axis: VectorTuple = (1.0, 0.0, 0.0)) ifcopenshell.entity_instance ¶
Create IfcAxis2Placement3D.
- Parameters:
position (VectorTuple, optional) – placement position (Axis), defaults to (0.0, 0.0, 0.0)
z_axis (VectorTuple, optional) – local Z axis direction, defaults to (0.0, 0.0, 1.0)
x_axis (VectorTuple, optional) – local X axis direction (RefDirection), defaults to (1.0, 0.0, 0.0)
- Returns:
IfcAxis2Placement3D
- Return type:
ifcopenshell.entity_instance
- create_axis2_placement_3d_from_matrix(matrix: numpy.typing.NDArray[numpy.float64] | None = None) ifcopenshell.entity_instance ¶
Create IfcAxis2Placement3D from numpy matrix.
- Parameters:
matrix (npt.NDArray[np.float64], optional) – 4x4 transformation matrix, defaults to np.eye(4)
- Returns:
IfcAxis2Placement3D
- Return type:
ifcopenshell.entity_instance
- create_ellipse_curve(x_axis_radius: float, y_axis_radius: float, position=Vector((0.0, 0.0)).freeze(), trim_points: Sequence[mathutils.Vector] = (), ref_x_direction: mathutils.Vector = Vector((1.0, 0.0)), trim_points_mask: Sequence[int] = ()) ifcopenshell.entity_instance ¶
Ellipse trimming points should be specified in counter clockwise order.
For example, if you need to get the part of the ellipse ABOVE y-axis, you need to use mask (0,2). Below y-axis - (2,0)
For more information about trim_points_mask check builder.get_trim_points_from_mask
Notion: trimmed ellipse also contains polyline between trim points, meaning IfcTrimmedCurve could be used for further extrusion.
- create_swept_disk_solid(path_curve: ifcopenshell.entity_instance, radius: float) ifcopenshell.entity_instance ¶
Create IfcSweptDiskSolid from path_curve (must be 3D) and radius
- create_transition_arc_ifc(width: str, height: str, create_ifc_curve: bool = False) tuple[list[mathutils.Vector], list[tuple[int, int], ifcopenshell.entity_instance | None]] ¶
- create_z_profile_lips_curve(FirstFlangeWidth: float, SecondFlangeWidth: float, Depth: float, Girth: float, WallThickness: float, FilletRadius: float) ifcopenshell.entity_instance ¶
- curve_between_two_points(points: tuple[mathutils.Vector, mathutils.Vector]) ifcopenshell.entity_instance ¶
Simple circle based curve between two points Good for creating curves and fillets, won’t work for continuous ellipse shapes.
- deep_copy(element: ifcopenshell.entity_instance) ifcopenshell.entity_instance ¶
- extrude(profile_or_curve: ifcopenshell.entity_instance, magnitude: float = 1.0, position: mathutils.Vector = Vector([0.0, 0.0, 0.0]).freeze(), extrusion_vector: mathutils.Vector = Vector((0.0, 0.0, 1.0)).freeze(), position_z_axis: mathutils.Vector = Vector((0.0, 0.0, 1.0)).freeze(), position_x_axis: mathutils.Vector = Vector((1.0, 0.0, 0.0)).freeze(), position_y_axis: mathutils.Vector | None = None) ifcopenshell.entity_instance ¶
Extrude profile or curve to get IfcExtrudedAreaSolid.
REMEMBER when handling custom axes - IFC is using RIGHT handed coordinate system.
Position and position axes are in world space, extrusion vector in placement space defined by position_x_axis/position_y_axis/position_z_axis
NOTE: changing position also changes the resulting geometry origin.
- extrude_face_set(points: list[mathutils.Vector], magnitude: float, extrusion_vector: mathutils.Vector = V(0, 0, 1).freeze(), offset: mathutils.Vector | None = None, start_cap: bool = True, end_cap: bool = True) ifcopenshell.entity_instance ¶
Method to extrude by creating face sets rather than creating IfcExtrudedAreaSolid.
Useful if your representation is already using face sets and you need to avoid using SweptSolid to assure CorrectItemsForType.
- Parameters:
points (list[Vector]) – list of points, assuming they form consecutive closed polyline.
magnitude (float) – extrusion magnitude
extrusion_vector (Vector, optional) – extrusion direction, by default it’s extruding by Z+ axis
offset (Vector, optional) – offset from the points
start_cap (bool, optional) – if True, create start cap, by default it’s True
end_cap (bool, optional) – if True, create end cap, by default it’s True
- Returns:
IfcPolygonalFaceSet
- Return type:
ifcopenshell.entity_instance
- extrude_kwargs(axis: Literal['Y', 'X', 'Z']) dict[str, mathutils.Vector] ¶
Shortcut to get kwargs for ShapeBuilder.extrude to extrude by some axis.
- It assumes you have 2D profile in:
XZ plane for Y axis extrusion,
YZ plane for X axis extrusion,
XY plane for Z axis extrusion,
Extruding by X/Y using other kwargs might break ValidExtrusionDirection.
- get_axis2_placement_3d_matrix(axis2_placement_3d: ifcopenshell.entity_instance) mathutils.Matrix ¶
Generate a Matrix from IfcAxis2Placement3D.
- Parameters:
axis2_placement_3d (ifcopenshell.entity_instance) – IfcAxis2Placement3D
- Returns:
generated matrix
- Return type:
Matrix
- get_polyline_coords(polyline: ifcopenshell.entity_instance) list[mathutils.Vector] ¶
polyline should be either IfcIndexedPolyCurve or IfcPolyline
- get_rectangle_coords(size: mathutils.Vector = Vector((1.0, 1.0)).freeze(), position: mathutils.Vector | None = None) list[mathutils.Vector] ¶
Get rectangle coords arranged as below:
3 2 0 1
- Parameters:
size (Vector, optional) – rectangle size, could be either 2d or 3d, defaults to (1,1)
position (Vector, optional) – rectangle position, default to None. if position not specified zero-vector will be used
- Returns:
list of rectangle coords
- Return type:
List[Vector]
- get_representation(context: ifcopenshell.entity_instance, items: ifcopenshell.entity_instance | list[ifcopenshell.entity_instance], representation_type: str | None = None) ifcopenshell.entity_instance ¶
Create IFC representation for the specified context and items.
- Parameters:
context (ifcopenshell.entity_instance) – IfcGeometricRepresentationSubContext
items – could be a list or single curve/IfcExtrudedAreaSolid
representation_type (str, optional) – Explicitly specified RepresentationType, defaults to None. If not provided it will be guessed from the items types
- Returns:
IfcShapeRepresentation
- Return type:
ifcopenshell.entity_instance
- get_simple_2dcurve_data(coords: list[mathutils.Vector], fillets: Sequence[int] = (), fillet_radius: Sequence[float] = (), closed: bool = True, create_ifc_curve: bool = False) tuple[list[mathutils.Vector], list[tuple[int, int], ifcopenshell.entity_instance | None]] ¶
Creates simple 2D curve from set of 2d coords and list of points with fillets. Simple curve means that all fillets are based on 90 degree angle.
> coords: list of 2d coords. Example: ((x0,y0), (x1,y1), (x2, y2)) > fillets: list of points from coords to base fillet on. Example: (1,) > fillet_radius: list of fillet radius for each of corresponding point form fillets. Example: (5.,) Note: filler_radius could be just 1 float value if it’s the same for all fillets.
Optional arguments: > closed: boolean whether curve should be closed (whether last point connected to first one). Default: True > create_ifc_curve: create IfcIndexedPolyCurve or just return the data. Default: False
< returns (points, segments, ifc_curve) for the created simple curve if both points in e are equally far from pt, then v1 is returned.
- get_trim_points_from_mask(x_axis_radius: float, y_axis_radius: float, trim_points_mask: list[int], position_offset: mathutils.Vector | None = None) list[mathutils.Vector] ¶
Handy way to get edge points of the ellipse like shape of a given radiuses.
Mask points are numerated from 0 to 3 ccw starting from (x_axis_radius/2; 0).
Example: mask (0, 1, 2, 3) will return points (x, 0), (0, y), (-x, 0), (0, -y)
- mep_bend_shape(segment, start_length: float, end_length: float, angle: float, radius: float, bend_vector: mathutils.Vector, flip_z_axis: bool) ifcopenshell.entity_instance ¶
- Parameters:
segment (ifcopenshell.entity_instance) – IfcFlowSegment for a bend. Note that for a bend start and end segments types should match.
angle (float) – bend angle, in radians
radius (float) – bend radius
bend_vector (Vector) – offset between start and end segments in local space of start segment used mainly to determine the second bend axis and it’s direction (positive or negative), the actual magnitude of the vector is not important (though near zero values will be ignored).
flip_z_axis (bool) – since we cannot determine z axis direction from the profile offset, there is an option to flip it if bend is going by start segment Z- axis.
- Returns:
tuple of Model/Body/MODEL_VIEW IfcRepresentation and transition shape data
- mep_transition_calculate(start_half_dim, end_half_dim, offset, diff=None, end_profile=False, angle=None, length=None, verbose=True)¶
will return transition length based on the profile dimension differences and offset.
If length is provided will return transition angle
- mep_transition_length(start_half_dim, end_half_dim, angle, profile_offset=V(0, 0).freeze(), verbose=True)¶
get the final transition length for two profiles dimensions, angle and XY offset between them,
the difference from calculate_transition - get_transition_length is making sure that length will fit both sides of the transition
- mep_transition_shape(start_segment, end_segment, start_length, end_length, angle=30.0, profile_offset=V(0, 0).freeze())¶
returns tuple of Model/Body/MODEL_VIEW IfcRepresentation and transition shape data
- mirror(curve_or_item: ifcopenshell.entity_instance | list[ifcopenshell.entity_instance], mirror_axes: mathutils.Vector = Vector((1.0, 1.0)).freeze(), mirror_point: mathutils.Vector = Vector((0.0, 0.0)).freeze(), create_copy: bool = False, placement_matrix: mathutils.Matrix | None = None) ifcopenshell.entity_instance | list[ifcopenshell.entity_instance] ¶
mirror_axes - along which axes mirror will be applied
For example, mirroring A(1,0) by axis (1,0) will result in A’(-1,0)
- mirror_2d_point(point_2d: mathutils.Vector, mirror_axes: mathutils.Vector = Vector((1.0, 1.0)).freeze(), mirror_point: mathutils.Vector = Vector((0.0, 0.0)).freeze()) mathutils.Vector ¶
mirror_axes - along which axes mirror will be applied
- plane(location: mathutils.Vector = Vector((0.0, 0.0, 0.0)).freeze(), normal: mathutils.Vector = Vector((0.0, 0.0, 1.0)).freeze()) ifcopenshell.entity_instance ¶
Create IfcPlane.
- Parameters:
location (Vector, optional) – plane position, defaults to (0.0, 0.0, 0.0)
normal (Vector, optional) – plane normal direction, defaults to (0.0, 0.0, 1.0)
- Returns:
IfcPlane
- Return type:
ifcopenshell.entity_instance
- polygonal_face_set(points: list[mathutils.Vector], faces: list[list[int]]) ifcopenshell.entity_instance ¶
Generate an IfcPolygonalFaceSet.
- Parameters:
points – rectangle size, could be either 2d or 3d, defaults to (1,1)
faces – list of faces consisted of point indices (points indices starting from 0)
- Returns:
IfcPolygonalFaceSet
- polyline(points: list[mathutils.Vector], closed: bool = False, position_offset: mathutils.Vector | None = None, arc_points: list[int] = []) ifcopenshell.entity_instance ¶
Generate an IfcIndexedPolyCurve based on the provided points.
- Parameters:
points (list[Vector]) – List of 2d or 3d points
closed (bool, optional) – Whether polyline should be closed. Default is False
position_offset (Vector, optional) – offset to be applied to all points
arc_points (list[int], optional) – Indices of the middle points for arcs. For creating an arc segment, provide 3 points: arc_start, arc_middle and arc_end to points and add the arc_middle point’s index to arc_points
- Returns:
IfcIndexedPolyCurve
- Return type:
ifcopenshell.entity_instance
Example:
# rectangle points = Vector((0, 0)), Vector((1, 0)), Vector((1, 1)), Vector((0, 1)) position = Vector((2, 0)) # #2=IfcIndexedPolyCurve(#1,(IfcLineIndex((1,2,3,4,1))),$) polyline = builder.polyline(points, closed=True, position_offset=position) # arc between points (1,0) and (0,1). Second point in the arc should be it's middle points = Vector((1, 0)), Vector((0.707, 0.707)), Vector((0, 1)), Vector((0,2)) arc_points = (1,) # point with index 1 is a middle of the arc # 4=IfcIndexedPolyCurve(#3,(IfcArcIndex((1,2,3)),IfcLineIndex((3,4,1))),$) curved_polyline = builder.polyline(points, closed=False, position_offset=position, arc_points=arc_points)
- profile(outer_curve: ifcopenshell.entity_instance, name: str | None = None, inner_curves: Sequence[ifcopenshell.entity_instance] = (), profile_type: str = 'AREA') ifcopenshell.entity_instance ¶
- rectangle(size: mathutils.Vector = Vector((1.0, 1.0)).freeze(), position: mathutils.Vector = None) ifcopenshell.entity_instance ¶
Generate a rectangle polyline.
- Parameters:
size (Vector, optional) – rectangle size, could be either 2d or 3d, defaults to (1,1)
position (Vector, optional) – rectangle position, default to None. if position not specified zero-vector will be used
- Returns:
IfcIndexedPolyCurve
- Return type:
ifcopenshell.entity_instance
- rotate(curve_or_item: ifcopenshell.entity_instance | list[ifcopenshell.entity_instance], angle: float = 90, pivot_point: mathutils.Vector = Vector((0.0, 0.0)).freeze(), counter_clockwise: bool = False, create_copy: bool = False) ifcopenshell.entity_instance | list[ifcopenshell.entity_instance] ¶
- rotate_2d_point(point_2d: mathutils.Vector, angle=90, pivot_point: mathutils.Vector = Vector((0.0, 0.0)).freeze(), counter_clockwise=False) mathutils.Vector ¶
- rotate_extrusion_kwargs_by_z(kwargs: dict[str, Any], angle: float, counter_clockwise: bool = False) dict[str, mathutils.Vector] ¶
shortcut to rotate extrusion kwargs by z axis
kwargs expected to have position_x_axis and position_z_axis keys
angle is a rotation value in radians
by default rotation is clockwise, to make it counter clockwise use counter_clockwise flag
- set_polyline_coords(polyline: ifcopenshell.entity_instance, coords: list[mathutils.Vector]) None ¶
polyline should be either IfcIndexedPolyCurve or IfcPolyline
- sphere(radius: float = 1.0, center: VectorTuple = (0.0, 0.0, 0.0)) ifcopenshell.entity_instance ¶
- Parameters:
radius (float, optional) – radius of the sphere, defaults to 1.0
center (VectorTuple, optional) – sphere position, defaults to (0.0, 0.0, 0.0)
- Returns:
IfcSphere
- Return type:
ifcopenshell.entity_instance
- translate(curve_or_item: ifcopenshell.entity_instance | list[ifcopenshell.entity_instance], translation: mathutils.Vector, create_copy: bool = False) ifcopenshell.entity_instance | list[ifcopenshell.entity_instance] ¶
- file¶
- ifcopenshell.util.shape_builder.is_x(value, x, si_conversion=None)¶
- ifcopenshell.util.shape_builder.PRECISION = 1e-05¶
- ifcopenshell.util.shape_builder.V¶
- ifcopenshell.util.shape_builder.VectorTuple¶
tuple of 3 float values
- ifcopenshell.util.shape_builder.round_to_precision¶
- ifcopenshell.util.shape_builder.round_vector_to_precision¶
- ifcopenshell.util.shape_builder.sign¶